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Abstract 

If the atoms in a unit cell are not almost randomly distributed 
difficulties may arise in the normal application of direct 
methods. Structural information can be taken into account 
mainly by modification of the probablity distribution of the E 
values or by modification of the E values themselves. A 
straighforward method involving the second possibility, 
applied successfully to the solution of two noncentro- 
symmetric steroid structures, is described in this paper. The 
modified E values are calculated by the formula I Em(hkl)l = 
[ I Eobs(hkl) l 2 _ el Efrag(hkl)l 2 ]1/2 with Em(hkl) = modified E 
value, Eobs(hkl) = observed E value, Efrag(hkl) = theoretical 
E value calculated with coordinates of a correctly oriented 
molecular fragment. 

In the case of approximately planar molecules, normal runs 
of direct-methods programs such as MULTAN 78 (Main, 
Hull, Lessinger, Germain, Declercq & Woolfson, 1978) or 
S H E L X  76 (Sheldrick, 1976) without the use of structural 
information often fail or reveal cc.rrectly oriented but 
incorrectly positioned molecular fragments. Usually the 
Patterson map shows in such cases a gridlike distribution of 
peaks. Main (1975) pointed out how to use structural 
information to improve direct methods. In this paper four 
different cases are distinguished: 1. randomly positioned 
atoms; 2. groups of atoms with random position and random 
orientation; 3. correctly oriented but randomly positioned 
atomic groups; 4. correctly positioned atoms. An especially 
important improvement is obtained in cases 3 and 4 because, 
besides a new normalization of E values, the phase and the 
variance of the "2 relationships are estimated using the 
structural information. Information in cases 3 and 4 can be 
obtained from E maps without the use of structural 
information or from Patterson vector search methods (e.g. 
Hoppe, 1957a, b; Huber, 1965; Nordman, 1966). Case 4 is 
also successfully treated by the application of direct methods 
for phase extension and refinement of difference structure 
factors (DIRDIF, Beurskens, Bosman, Doesburg, Gould, 
Van den Hark & Prick, 1980) while case 3 needs the 
combination of D1RDIF with a translation function 
(TRADIR, Beurskens, Doesburg & Beurskens, 1980) or the 
pure application of a translation function (e.g. Karle, 1975). 

* To whom all correspondence should be addressed. 

0567-7394/82/060868-02501.00 

In this paper, a new possibility of using structural 
information for the improvement of direct methods is 
reported. The improvement is done by a modification of E 
values. The modification is in dealing with case 3 or 4 and the 
information of the correctly oriented molecular fragment has 
to be taken from a normal E map or from Patterson vector 
rotation search as mentioned above. New E values are 
calculated according to (1): 

IE,,,(hkl)l = [IEobs(hkl)12 - clEfrag(hkl)1211/2, (1) 

with Em(hkl ) = modified E value, Eobs(hkl ) = observed E 
value, Efrag(hkl ) = E values calculated with coordinates of a 
correctly oriented fragment, c = subtracting constant. 

The I Em(hkl) l 2 values represent the Fourier transform of a 
Patterson map derived from a Patterson map calculated with 
the I Eobs(hkl)12 and modified by subtracting a theoretical 
Patterson function containing the vector set of a correctly 
oriented fragment of the molecule. It may be expected that in 
the modified Patterson map [IEm(hkl)l 2] gridlike distri- 
butions of peaks are less prominent than in the original 
Patterson function [PEobs(hkl)12]. Therefore, it may be 
assumed that the probability distribution of the E,,(hkl) 
deviates less from the theoretical curve for randomly 
distributed atoms than the distribution of the original E 
values. The constant c (c < 1.0) reduces the effect of the 
subtraction and a value of 0.2 has proved to be favourable. 
The modified E values are rescaled to (I Em(hkl) l 2) _ 1 and 
entered into the MULTAN part of the MULTAN 78 system. 

The modification was successfully applied to the solution 
of 3-methoxy- 14a, 15 ct-oxido-estra- 1,3,5 ( 10)-triene- 17 ct-ol 
(Messerschmidt & Schubert, 1982), space group P212121, 22 
non-hydrogen atoms per asymmetric unit, and to a modified 
cardenolide (Messerschmidt & Megges, 1982), space group 
P21212 I, 35 non-hydrogen atoms per asymmetric unit. In 
both cases, the normal MULTAN 78 and SHELX runs 
revealed E maps consisting of fragments containing six- 
membered rings. The peaks of different heights form grids. 
Two transfused six-membered rings formed by the highest 
peaks served as input parameters for the modification. For 
the calculation of the Errag(hkl ) values the scattering curve of 
carbon was used. A subtraction constant c equal to 0.2 was 
applied and proved satisfactory. For both structures, only 64 
phase sets were generated including 1500 )-2 relationships. 
The first structure (Fig. 1) was found from an E map 
calculated for the phase set with third-highest combined 

© 1982 International Union of Crystallography 



S H O R T  C O M M U N I C A T I O N S  869 

figure of merit. This E map contained all 22 non-hydrogen 
atoms to be found. For the modified cardenolide structure, the 
E map calculated for the phase set with the second-highest 
combined figure of merit showed 31 atoms of the total 35 
non-hydrogen atoms of the molecule. It is important to 
remark that the translations of the correctly positioned 
molecules did not coincide with the translations of the 
structural fragments selected from the normal E map. The 
modification of E values is easily incorporated in existing 
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Fig. 1. Comparison of E maps of 3-methoxy-14a,15a-oxido- 
estra-l,3,5(10)-triene-17a-ol. The peaks of the best E map 
calculated with the Eobs(hkl ) are connected by dotted lines 
representing a grid. The solid black circles mark the peaks which 
were used for the calculation of the Errag(hkl). The solid lines 
connect the 22 highest peaks in the E map with the third-highest 
combined figure of merit calculated with the Em(hkl ). All these 
peaks correspond to atoms. 

direct-methods programs and is an interesting alternative to 
the above-mentioned methods. 
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Abstract 

An expression is given for the estimated standard deviation 
of the atom-to-plane distance of an atom defining the 
least-squares plane. 

Two least-squares methods have been proposed to deter- 
mine the best-plane parameters and their error matrix 
(variance-covariance matrix): one is a method of undeter- 
mined multiplier (Ito, 1981a, hereinafter called paper I), and 
the other is an elimination method (Ito, 1981b, paper II). 
Although the two methods give identical results in a general 
case, the elimination method has an advantage that it can 
deal with a plane defined with only three atoms. 

In paper I, an expression is given for the-estimated 
standard deviation of the atom-to-plane distance of the ith 
atom :* 

* As will be explained in the following, tr~ of (11) and a2 of (1) are 
the estimated standard deviations of the atom-to-plane distance of 
an atom defining and not defining the plane, respectively. 
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o2(dt) = (dMo)ii + f/inMYi, (1) 

where dM 0 is the error matrix for the atom-to-plane distances 
originating from the atomic positional errors, 9i (transpose of 
Y~) is an atomic coordinate matrix: 

91 ~ (xiYiZi-- 1), (2) 

and nM is the error matrix for the four plane parameters, 

fi = (m I m 2 m 3 do), (3) 

which is obtained through the best-plane calculations. 
Expression (1) has been derived under the assumption that 
the atomic coordinates and the plane ,parameters are not 
correlated. Therefore, it is applicable only to atoms not 
defining the plane. The assumption is not valid for the 
plane-defining atoms because their coordinates are used to 
determine the plane parameters. Particularly in the case of a 
three-atom plane, the correlation is perfect; since the three 
atoms necessarily lie on the plane, their atom-to-plane 
distances of zero should have zero standard deviations, 
which is evidently in contradiction with (1). 
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